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Abstract. This paper describes a Monte Carlo study of two-dimensional directed site 
percolation. We show that the anisotropic behaviour resulting from the imposition of a 
directional bias must be accounted for in the finite-size scaling analysis of the Monte Carlo 
data if reliable results are to be obtained. Using suitably modified finite-size scaling we 
obtain estimates for the percolation threshold Pc and the exponents vP, v, and p which 
are in good agreement with results obtained by other methods. 

1. Introduction 

Percolation models have become increasingly popular in recent years due to the wide 
variety of possible applications and the theoretical interest in the percolation threshold 
as a geometrical phase transition (for recent reviews and extensive references see 
Stauffer 1979, Essam 1980, Deutscher et a1 1983). Among the many recent developments 
there has been a great deal of interest in studying the effects of imposing a global 
directional bias in these models (for an excellent introduction see Kinzel 1983). The 
introduction of a preferred direction strongly affects the large-scale behaviour and 
leads to anisotropic scaling and direction-dependent critical properties. 

An example of directed site percolation is shown in figure 1. Here bonds only 
occur between nearest-neighbour occupied sites, which are present with probability P, 
and percolation is only permitted in the direction of the arrows. In order to discuss 
percolation across a lattice it is necessary to specify a set of sources (typically the 
initial boundary row as in figure 1). We then imagine that a fluid is introduced at the 
source sites and flows along the allowed bonds in the permitted directions; those sites 
‘wetted’ by the fluid define the cluster of sites connected to the source (in figure 1 
fragments (A), (B) and (C) are not connected to the source sites). Perhaps the most 
important new feature is the appearance of two different correlation length exponents 
vp and vT, which characterise the divergence of the correlation lengths tp and tT in 
the preferred and transverse directions respectively. Below the percolation threshold 
only finite-sized clusters occur and these become increasingly anisotropic in shape as 
the threshold is approached, growing more rapidly in the preferred direction than in 
the transverse directions. The behaviour is described in the following way: 

g-p - g-; - ( Pc - P)--”P- ( Pc - P ) - Q  

where Pc is the percolation threshold and 8 = vp/ vT is the anisotropy exponent. The 
existence of two characteristic length scales is reminiscent of the situation in critical 
dynamics, where there is both a characteristic length and a time scale; indeed it is 
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L P  

Figure 1. An example of directed site percolation on a square lattice. The arrows indicate 
the allowed directions of flow along the bonds. 

often useful to think of the preferred direction as being ‘time-like’ and to regard 6 as 
being similar to the dynamic critical exponent z. 

Cardy and Sugar (1980) have shown that directed percolation can be mapped onto 
a Reggeon field theory which models the creation, propagation and destruction. of a 
cascade of elementary particles. This is a particular example of the deeper connection 
between directed percolation and branching Markov processes (see for example Grass- 
berger and de la Torre 1979), which is useful in describing diffusion-reaction types of 
processes. As Kinzel (1983) has pointed out, 2~-directed bond percolation can be 
thought of as an autocatalytic contact reaction in one dimension. The directed percola- 
tion cluster configurations are equivalent to the trajectories of a diffusing-reacting 
particle system in one space and one time dimension, where particles may diffuse, 
split, recombine or disappear. The lifetime of the population of particles is equivalent 
to tP in directed percolation, while the spatial extent of the population is equivalent 
to 5T. 

Critical thresholds and exponents for directed percolation have been calculated by 
means of series expansions (Blease 1977, Essam and de’Bell 1981, de’Bell and Essam 
1983a, b), transfer matrix calculations (Kinzel and Yeomans 1981), and Monte Carlo 
simulations (Kertesz and Vicsek 1980, Dhar and Barma 1981). Universal critical 
properties have also been calculated by exploiting the connection with reaction models 
which belong to the same universality class, again techniques such as E or series 
expansions (see Cardy and Sugar (1980) for references) or Monte Carlo simulations 
(Grassberger and de la Torre 1979) have been used. The Monte Carlo simulations of 
the directed percolation models gave disappointing results in comparison with the 
other techniques and with the Monte Carlo simulations of reaction models. The aim 
of this present paper is to attempt to redress this situation by improving on the previous 
Monte Carlo work. 

More specifically, we will focus our attention on directed site percolation on the 
2~ square lattice, as illustrated in figure 1. We estimate the percolation threshold, Pc, 
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and the correlation length exponents, v p  and vT, by extending the usual Monte Carlo 
finite-size scaling techniques (see for instance Reynolds et al 1978, 1980) to cope with 
the anisotropy in the problem. We also show that the earlier simulations of Kertesz 
and Vicsek (1980) failed to handle this anisotropy correctly, although this is not 
immediately apparent in their original data. Finally, following the method used by 
Dhar and Barma (198 l ) ,  we estimate the value of the exponent p, which characterises 
the non-analytic behaviour of the fraction of sites belonging to the infinite cluster as 
the percolation threshold is approached from above. 

2. Method and Results 

We begin by reviewing the standard Monte Carlo finite-size scaling method, which is 
used to estimate the percolation threshold and correlation-length exponent for ordinary 
percolation (Reynolds et a1 1978, 1980, see also Stauffer 1981). The method utilises 
an iterative Monte Carlo scheme to determine threshold probabilities for a series of 
realisations of finite lattices of various sizes and then uses finite-size scaling to extrapo- 
late the results to an infinite lattice, The difficulties introduced by the presence of two 
length scales only affect the finite-size scaling theory aspects of the method. Firstly 
we take a finite lattice of size Ld and assign a random number r, from the interval 
(0, 1)  to each site i ;  we call this a lattice realisation. We find the percolation threshold 
probability for this particular realisation by a binary search method. We let P,-(L, 0) 
be an initial estimate for this threshold probability and we designate those sites where 
r, < Pc(L, 0) as being occupied, we then check to see whether a percolating cluster is 
present or not at this particular estimate. If a percolating cluster is present we try a 
new estimate P,-(L, 1 )  < P,-(L, 0), if not we try P,-(L, 1 )  > P,-(L, 0) and again we check 
for percolation at the new estimate. This procedure is repeated until we have two 
successive estimates Pc( L, N )  and Pc( L, N + 1)  which bound an interval containing 
the true threshold value. Having found this interval we can then locate the threshold 
to any required accuracy by successive binary chopping of the interval containing the 
threshold. Finally by repeating the whole process many times, for different random 
number sequences, we obtain a series of estimates for P,-(L). The average value of 
these estimates, ( Pc( L ) ) ,  is taken as an estimate for the threshold, and the spread in 
the estimates determines the correlation-length exponent, v, through finite-size scaling. 
For ordinary percolation we have 

(2.1) a( L )  = (( Pc ( L)2)  - ( P(-( L))2) - L- ” ” 

(see Reynolds et a1 1978, 1980). This result follows from the finite-size scaling 
hypothesis for the correlation length, namely 

5 ( L ;  P )  = [(a; P )  Y ( L / S ( a ;  PI) (2.2) 

where the scaling function Y ( x )  approaches the value 1 for x >> 1, so that (2.2) reduces 
to an identity in the limit L+ CC, and behaves like Ax for 0 < x << 1, so that & remains 
finite as [= diverges in the limit P +  Pc. 

A natural generalisation for the directed percolation counterparts is 

(2.3) 
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and similarly for tT(LP, L,; P ) ,  where Lp and & denote the extent of the lattice in 
the preferred and transverse directions respectively. Although the above generalisation 
appears reasonable one should note the cautionary example of the directed self- 
avoiding walk where a third length enters into the finite-size scaling theory (Szpilka 
and Privman 1983). Equation (2.3) is termed a strong scaling hypothesis and has been 
successfully employed in transfer matrix calculations by Kinzel and Yeomans ( 198 1).  
In these calculations t p ( ~ ,  L,; P )  is calculated on strips of width L, (i.e. Lp = 00, L, 
finite) and (2.3) reduces to a single variable function which can be exploited by the 
usual methods of phenomenological scaling. However, in the Monte Carlo approach 
the situation is different as Lp and L, are both finite. 

In the Monte Carlo approach we investigate finite lattices of size Lp by L,. We 
estimate the percolation threshold by finding the smallest value of P for which there 
is a cluster that spans the lattice in the preferred direction; this is achieved by using 
the binary search procedure outlined above. Since the finite-size clusters become 
increasingly anisotropic in shape, as the threshold is approached from below, we might 
expect to find a regime where G ( x , y )  is controlled by its first argument. We expect 
to see spanning clusters when tp becomes comparable with Lp, so by choosing 
Lp = L, = L sufficiently large we should find that,the first argument of G is of order 
unity while the second argument is very large when P is near Pc(L) ,  then by analogy 
with the behaviour of Y ( x )  in (2.2) we expect the behaviour of G ( x ,  y )  to be controlled 
by x. If such a regime exists then (2.1) should apply with v replaced by vp. This is 
essentially the approach taken by Kertesz and Vicsek (1980) for the directed bond 
percolation problem on the square lattice, although the scaling assumptions were not 
explicitly mentioned. 

We have followed the same approach for the site problem and our results for a 
series of L X L  lattices are given in table 1. The numbers in parentheses give the 
approximate statistical uncertainty in the last digit(s) quoted (as taken from the 
sample-to-sample variation in the estimates). In figure 2 we have plotted log[a(L)-'] 
against log(L), which according to (2.1) should give a straight line with slope vp'. 
Our results appear to support this scaling hypothesis but from the slope we obtain 

v p =  1.53(2) (2.4) 
which compares very unfavourably with other estimates of vp  by series methods etc. 
If this scaling hypothesis is valid then we expect 

(2.5) IPC(c0) - (Pc( L)) l -  L - - I / y p .  

Table 1. Results for isotropic finite lattices. 

32 204 800 0.638 09(7) 0.031 32(5) 
64 204 800 0.655 66(5) 0.019 67(3) 

256 12 800 0.679 5 1 (7) 0.007 85(7) 
512 3 200 0.686 98(9) 0.005 02(9) 

1024 800 0.692 32( 11)  0.00321(11) 
2048 200 0.696 25( 15)  0.002 07( 15) 
4096 50 0.699 22( 16) 0.001 12(16) 

128 51 200 0.669 40( I 1 ) 0.012 43(5) 
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calculations of Kinzel and Yeomans (1981) yielding 1.58 1(  1). Preliminary Monte Carlo 
simulations of our own have confirmed this value, but with much larger error bars. It 
has also been conjectured that 6 =log 3/log 2 is an exact result (Kinzel 1983) so we 
have chosen to use this value in equations (2.1 1 )  and (2.12). From (2.8) we see that 
this particular choice of 6 means that we can take b, = 3 and b, = 2 as our rescaling 
factors. 

Similar anisotropic length rescalings for both directed percolation and conductivity 
problems have been discussed in the literature (Redner and Brooks 1982, Redner and 
Mueller 1982, Arora er a1 1983). (We thank one of the referees for drawing our 
attention to these papers.) The present approach is very similar to that followed by 
Redner and Mueller (1982) in their Monte Carlo study of the conductivity problem. 

We repeat the above Monte Carlo simulations starting with Lp = 9 and LT = 4, but 
now we increase the size of the lattice by a factor of 3 each time in the preferred 
direction and by a factor of 2 each time in the transverse direction. The results for 
these anisotropic lattices are shown in table 2. In figure 4 we have plotted 
log[a(bpLp, b;”L,)-’] against log(bpLp), which according to (2.1 1) should give a 
straight line with slope vp’. From the fit to (2.11) (leaving out data for L p = 9 ,  6561, 
531 441) we obtain 

v p =  1.73(1) (2.13) 

which is in good agreement with previous results. More importantly, substituting from 
(2.13) into (2.12) and plotting (Pc(bpLp, b;”L,)) against (bpLp) - ’ / ”~  we obtain the 
expected straight line, as shown in figure 5. This yields an estimate for Pc of 

Pc = 0.7055( 1 )  (2.14) 

in  excellent agreement with the most recent series estimates. 

Table 2. Results for anisotropic finite lattices. 

Number of 
L, Lr realisations (PC(L,, b)) 4 L,, 

9 4 524 288 0.666 3 1 (14) 0.092 83( 12) 
27 8 524 288 0.681 90(7) 0.049 85(5) 
81 16 409 600 0.692 43(4) 0.026 40(3) 
243 32 184 320 0.698 48(3) 0.013 90(3) 
729 64 40 960 0.701 77(4) 0.007 42(3) 
2187 128 4096 0.703 56(6) 0.003 8 l(6) 
6561 256 1536 0.704 37(5) 0.002 Ol(5) 

531 441 4096 20 0.705 40(3) 0.001 13(3) 

Our results show the importance of choosing the correct 8. The conjectured value, 
6 =log 3/log 2, is strongly supported by the scaling behaviour seen over almost four 
decades in figure 5. An analysis of the sensitivity of the results to small changes in 6 
is difficult due to the need to choose rescaling factors which give a series of integer-sized 
samples. Nevertheless the results would seem to indicate that 6=log3/ log2,  if not 
an exact result, is at the very least a good approximation. 

Regarding this conjecture we note here a possible connection with the statistical 
mechanics of cellular automata. Wolfram ( 1983) has shown for one-dimensional 
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1 
v = 1.13 I 

6 ' ~ " ' " " " "  " " " " "  

J - 

4 

2 3 4 5 6 1 0  0.690 0.694 0 698 0.702 0.706 0.710 
I n I L I  Probability 

Figure 4. A plot of log[u(b,L,, b;''&)-'] against Figure 5. A plot of (bpLp)-""P against 
log[b,L,] where 0 = log 3/log 2 and L, = 9, L, = 4. (Pc( b,L,, bk"&)) where 0 = log 3/log 2 and Lp = 9, 
The slope yields u p ' .  L, = 4. Extrapolating as bpLp+ CO yields Pc. 

neighbourhood three cellular automata, that patterns which 'grow' from any simple 
initial state according to all but one of the 'complex' rules share the universal feature 
of self-similarity, characterised by a fractal dimension log 3/log 2. The self-similar 
structures exhibited in directed percolation arise through local processes which are 
very similar to cellular automaton rules. 

Finally we estimate the exponent p by counting the fraction of sites belonging to 
the infinite cluster, Fm(P), which we expect to behave like 

(2.15) 

as P approaches Pc from above. Following Dhar and Barma (1981) the value of 
F,(P) is estimated by counting the fraction of percolating sites in the last 500 000 
rings of a 4096 ~ 6 4 0  000 cylinder, with the cylinder axis lying along the preferred 
direction and with every site in the initial ring being occupied. In figure 6 we show a 
log-log plot of Fm(P) against (P-Pga'), where Pga' is taken to be 0.7055. This 
particular trial value for Pc yields the following result for p 

p = 0.2727(7) ( Pgal = 0.7055). (2.16) 

Fm(P) - (P - PClP 

-1.5-, , . , -  ' ,  , ' ,  ' ,  A 
-6.0 -5.6 -5.2 -4.8 -4.4 -4.0 

Log lP-P,'"o' I 

Figure 6. A plot of log[F,( P)] against log( P - PE'"') with PPI = 0.7055. The slope yields 
an estimate of p. 
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Fits to Pza' = 0.7054 and ,Pa' = 0.7056 yield 

/3 = 0.2745(8) 

/3 = 0.2707(7) 

( PFa' = 0.7054) 

( PFa' = 0.7056). 

(2.17a) 

(2.17 b )  

These results show the sensitivity to the choice of PFa'. The difficulty with this method 
is that the data become less and less reliable the closer P gets to Pc due to the 
fluctuations becoming larger. This makes it difficult to perform a simultaneous fit to 
both /3 and Pc. In fact (2.16) gives the best fit to the data but (2.17b) is almost as good. 

3. Concluding remarks 

In summary we have demonstrated that Monte Carlo methods can be used in directed 
percolation to yield reliable estimates of the critical threshold probability and 
exponents, provided that the anisotropy is accounted for correctly. The results obtained 
compare favourably with those obtained by other methods as shown in table 3.  Our 
results also support the conjecture that 8 = log 3/log 2 as shown by the scaling behaviour 
over almost four decades exhibited in figure 5 .  This conjecture deserves further 
attention. 

In conclusion we note once again that finite-size scaling should be applied with 
caution to models which exhibit anisotropic divergences of critical correlations. 

Table 3. Comparison with previous results. 

Present results 0.7055( 1 )  1.73( 1) 1.09(1) 0.273(2) 
Series" 0.7055(1)+0.02Ay 1.715(10) +25APc 1.095(2) +25AP, 0.2725(15)-6APc 
Transfer matrixb 0.7058( I )  1.730(2) 1.094( 1) 
Monte Carlo (Bond)' 1.65(6) 
Monte Carlo ( Bond)d 

a de'Bell and Essam (1983a, b). 
Kinzel and Yeomans (1981). 

0.240(6) 

Kertesz and Vicsek (1980). 
Dhar and Barma (1981). 
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